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Final Report for F30602-02-2-0185:
Game-Theoretic Algorithms for
Intelligent Networking

Principal Investigator: Profl. Michael Kearns
Department of Computer and Information Science
University of Pennsylvania
Philadelphia, PA 19104

mkearns@cis.upenn.edu

1 Summary

The funding was used primarily for the support of two postdoctoral associates, Drs.
Luis Ortiz (www.cis.upenn.edu/leortiz) and Sham Kakade (www.cis.upenn.edu/ skakade).
Working closely with these two colleagues, Kearns made considerable progress on the de-
velopment of powerful new models and algorithms for very larpe-scale games and eco-
nomic problems with a rich network structure. A brief synopsis of the main findings, along
with pointers to the relevant papers, is given below, followed by further details on the meth-
ods and results in subsequent sections.

o Kearns and Ortiz, following earlier work of Kearns and other colleagues, devel-
oped the first general distributed algorithm for efficiently computing approximate
Nash equilibria in large games on networks. They established basic convergence
properties of this algorithm, and demonstrated its effectiveness on a set of bench-
mark problems.

Nash Propagation for Loopy Graphical Games. With L. Ortiz. Proceedings of
Neural Information Processing Systems 2002. Paper is available for download at
www.cis.upenn.edu/ mkearns/papers/nashprop.pdf

s Kearns and Ortiz studied algorithms for computing Nash equilibria in a recently
introduced model known as Interdependent Security (IDS) games, which capture
the tradeoffs between direct and indirect sources of risk in problems such as airline
baggage screening. After establishing basic algorithmic properties of the model,
they did an experimental study using civilian flight itinerary data.

Algorithms for Interdependent Security Games. With L. Ortiz.  Neu-
ral Information Processing 2003. Paper is available for download at
www.cis.upenn.edu/ mkearns/papers/ids.pdf

¢ Kakade, Keamns and Ortiz (with visitor John Langford) examined the properties
and computation of correlated equilibria (a powerful generalization of Nash equi-
libria) in large games on networks. They established a fundamental connection
between the network of the game, and the structure of the minimal Markov net-
work required to represent the correlations required at equilibrium. They also
provide algorithms for correlated equilibrium computation.
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Correlated Equilibria in Graphical Games. With S. Kakade, J. Langford, and L.
Ortiz. ACM Conference on Electronic Commerce, 2003. Paper is available for
download at www.cis.upenn.edw/ mkearns/papers/cegg.pdf

s Kakade, Kearns and Ortiz introduced a network generalization of classical models
in mathematical economics, such as the Fisher and Arrow-Debreu models. They
established equilibrium existence in this model, and provided among the very first
algorithms for efficient approximate equilibrium computation.

Graphical Economics. With S. Kakade and L. Ortiz. To appear, Conference
on Computational Learning Theory 2004. Paper is available for download at
www,cis.upenn.edw/ mkearns/papers/graphecon.pdf

2 Introduction

Recently there has been renewed interest in game theory in several research disciplines,
with its uses ranging from the modeling of evolution to the design of electronic markets,
network protocols, and distributed algorithms. In the Al community, game theory is emerg-
ing as the dominant formalism for studying strategic and cooperative interaction in multi-
agent systems. Classical work provides rich mathematical foundations and equilibrium
concepts, but relatively little in the way of computational and representational insights that
would allow game theory to scale up to large, complex systems.

One promising direction for making computational progress is to introduce alternative ways
of representing these problems, with the hope that wide classes of “natural” problems may
permit special-purpose solutions. By developing new representations that permit the ex-
pression of common types of structure in games and economies, it may be possible to
design algorithms that exploit this structure to yield computational as well as modeling
benefits. Researchers in machine leaming and antificial intelligence have proven especially
adept at devising models that balance representational power with computational tractabil-
ity and learnability, so it has been natural to turn to these literatures for inspiration in
strategic and economic models.

Among the most natural and common kinds of structure that arise in game-theoretic and
economig settings are constraints and asymmetries in the inferactions between the parties.
By this we mean, for example, that in 2 large-population game, not all players may directly
influence the payoffs of alt others. The recently introduced formalism of graphical games
captures this notion, representing a game by an undirected graph and a corresponding set
of local game matrices (Kearns et al. [2001]).

Graphical games are a representation consisting of an undirected graph and a set of local
payoff matrices was proposed for multi-player games. The interpretation is that the payoff
to player ¢ is a function of the actions of only those players in the neighborhood of vertex i
in the graph. Exactly as with the graphical models for probabilistic inference that inspired
them (such as Bayesian and Markov networks), graphical games provide an exponentially
. more succinct representation in cases where the number of players is large, but the degree
of the interaction graph is relatively small. Also as for probabilistic inference, the problem
of computing equilibria on arbitrary graphs is intractable in general, and so it is of interest
to identify both natural special topologies permitting fast Nash computations, and good
heuristics for general graphs.

Keams et al. [2001] (abbreviated KLS in the sequel) gave a provably efficient (polynomial
in the model size) algorithm for computing all approximate Nash equilibria in graphical
games in which the underlying graph is a tree. This algorithm can be formally viewed as
the analogue of the junction tree algerithm for inference in tree-structured networks (Pearl
[1988]). A related algorithm described in Littman et al. [2002] computes a single but exact
Nash equilibrivm, again for a tree topology.
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The funding here was used to extend this work to more general settings. We now outline
these settings.

2.1 Generalizing from Trees to “Loopy” Graphs

A natural question following from KLS is whether there are generalizations of the basic
tree algorithm analogous to those for probabilistic inference, In probabilistic inference,
there are two main approaches to generalizing the polytree algorithm. Roughly speaking,
the first approach is to take an arbitrary graph and “turn it into a tree” via triangulation,
and subsequently run the tree-based algorithm on the resulting junction tree (Lauritzen and
Spiegelhalter [1988]). This approach has the merit of being guaranteed to perform infer-
ence correctly, but the drawback of requiring the computation to be done on the junction
tree. On highly loopy graphs, junction tree computations may require exponential time.
The other broad approach is to simply run (an appropriate generalization of) the polytree
algorithm on the original loopy graph. This method garnered considerable interest when it
was discovered that it sometimes performed quite welt empirically, and was closely con-
nected to the problem of decoding in Turbo Codes. Belief propagation has the merit of each
iteration being quite efficient, but the drawback of having no guarantee of convergence in
general — though recent theoretical work has established convergence for certain special
cases (Weiss [2000]).

In recent work, Vickrey and Koller [2002] proposed a number of heuristics for equilibria
computation in graphical games, including a constraint satisfaction generalization of KLS
that essentially provides a junction tree approach for arbitrary graphical games. They also
gave promising experimental results for this heuristic on certain loopy graphs that result in
manageable juncticn trees.

In this work, we introduced the NashProp algorithm, a different KLS generalization which
provides an approach analogous to loopy belief propagation for graphical games.

2.2 Computation in Interdependent Security Games

Inspired by events ranging from 9/11 to the collapse of the accounting firm Arthur An-
dersen, economists Kunreuther and Heal [2003] recently introduced an interesting game-
theoretic model for problems of interdependent security (IDS), in which a large number of
players must make individual investment declsions related to security — whether physical,
financial, medical, or some other type — but in which the ultimate safety of each participant
may depend in a complex way on the actions of the entire population. A simple example is
the choice of whether to install a fire sprinkler system in an individual condominijum in a
large building. While such a system might greatly reduce the chances of the owner’s prop-
erty being destroyed by a fire originating wirhir their own unit, it might do little or nothing
to reduce the chances of damage caused by fires originating in orher units (since sprinklers
can usuzlly only douse small fires early). If “enough” other unit owners have not made the
investment in sprinklers, it may be not cost-effective for any individual to do so.

Kunreuther and Heal [2003] observe that a great variety of natural problems share this ba-
sic interdependent structure, including investment decisions in airline baggage security (in
which investments in new screening procedures may reduce the risk of directly checking
suspicious cargo, but nearly all airlines accept transferred bags with no additional screening
1); risk management in corporations (in which individual business units have an incentive to
avoid high-risk or illegal activities only if enough other units are similarly well-behaved);
vaccination against infectious disease (where the fraction of the population choosing vac-
cination determines the need for or effectiveness of vaccination); certain problems in com-

'El Al airlines is the exception (o this.
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puter network security; and many others. All these problems share the following important
properties:

e There is a “bad event” (condominium fire, airline explosion, corporate bankruptcy,
infection, etc.) to be avoided, and the opportunity to reduce the risk of it via some
kind of investment.

¢ The cost-effectiveness of the security investment for the individual is a function
of the investment decisions made by the others in the population.

The original work by Kunreuther and Heal [2003] proposed a parametric game-theoretic
model for such problems, but left the interesting question of computing the equilibria of
model largely untouched. In this work, we examined such computational issues.

2.3 An Alternative Equilibrium Notion: Correlated Equilibrium

Like much of the history of game theory, the study of graphical games so far has been dom-
inated by Nash's classical notion of equilibrium, for which it always suffices to consider
product distributions over the players’ joint actions. Here, we examined correlated equi-
libria (CE) (Aumann [1974]) in graphical games, which allow arbitrary joint distributions.

In classical game theory, correlated equilibria offer a number of conceptual and computa-
tional advantages over Nash equilibria. One of the most interesting aspects of CE is that
they broaden the set of “rational” solutions for normal form games without the need to
address often difficult issues such as stability of coalitions and payoff imputations (Au-
mann [1987]). Other advantages include the facts that new and sometimes more “fair”
payoffs can be achieved, that correlated equilibria can be computed efficiently for games in
standard normal form, and that correlated equilibria are the convergence notion for several
natural learning algorithms (Foster and Vohra [1999]). Furthermore, it has been argued
that correlated equilibria are the natural equilibrium concept consistent with the Bayesian
perspective (Aumann {1987], Foster and Vohra [1997]).

Correlated equilibria (CE) can be viewed as distributions over joint actions in which players
are still taking best responses. Intuitively, in a CE, the action played by any player is a best
response (in the expected payoff sense) to the conditional distribution over the other players
given that action, and thus no player has a unilateral incentive to deviate from playing their
role in the CE, Note that a CE may be an arbitrarily complex joint distribution. In contrast,
a Nash equilibrizm (Nash [1951]) is a special case of CE in which we demand that every
player acts independently of all others.

The traffic signal is often cited as an informal everyday example of CE, in which a single bit
of shared information allows a fair split of waiting times (Owen [£995]). In this example,
no player stands to gain greater payoff by unilaterally deviating from the correlated play,
for instance by “running a light”.

We presented a series of fundamental results examining the representational and computa-
tional issues that arise when considering correlated equilibria in the compact language of
graphical games.

24 Generalizing to the Economic Setting

Models for the exchange of goods and their prices in a large economy have a long and sto-
ried history within mathematical economics, dating back more than a century to the work
of Walras [1874] and Fisher [1891], and continuing through the model of Wald [1936] (see
also Brainard and Scarf [2000]). A pinnacle of this line of work came in 1954, when Arrow
and Debreu provided extremely general conditions for the existence of an equilibrium in
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such models (in which markets clear, i.e. supply balances demand, and all individual con-
sumers and firms optimize their utility subject to budget constraints). Like Nash's roughly
contemporary proof of the existence of equilibria for normal-form games (Nash [1951]),
Arrow and Debreu's result placed a rich class of economic models on solid mathematical
ground.

These important results established the exisrence of various notions of equilibria. The com-
putation of game-theoretic and economic equilibria has been a more slippery affair. Indeed,
despite decades of effort, the computational complexity of computing a Nash equilibrium
for a general-sum normal-form game remains unknown, with the best known algorithms
requiring exponential time in the worst case. Even less is known regarding the compu-
tation of Arrow-Debreu equilibria. Only quite recently, a polynomial-time algorithm was
discovered for the special but challenging case of linear utility functions (Devanur et al,
[2002], Jain et al. [2003], Devanur and Vazirani [2003]).

In this work, we introduced a graph-theoretic generalization of classical Arrow-Debreu
economics that permits the expression of common types of economic structure. We then
provided algorithms which exploit this structure to yield computational benefits.

3 Methods and Results

We now discuss the methods used and results we obtained.

3.1 Computing Nash Equilibria on Loopy Graphs

In this work, we introduced the NashProp algorithm, a different KLS generalization which
provides an approach analogous to loopy belief propagation for graphical games. Like
belief propagation, NashProp is a local message-passing algorithm that operates directly
on the original graph of the game, requiring no triangulation or moralization operatioans.
NashProp is a two-phase algorithm. In the first phase, nodes exchange messages in the form
of two-dimensional tables. The table player U/ sends to neighboring player V in the graph
indicates the values U “believes™ he can play given a setting of V and the information he has
received in tables from his other neighbors, a kind of conditional Nash equilibrium. In the
second phase of NashProp, the players attempt to incrementally construct an equilibrium
obeying constraints imposed by the tables computed in the first phase.

We provided rather strong theory for the first phase, proving that the tables must always
converge, and result in a reduced search space that can never eliminate an equilibrium.
When run using a discretization scheme introduced by KLS, the first phase of NashProp
will actually converge in time polynomial in the size of the game representation.

We also reported on a number of controlled experiments with NashProp on loopy graphs,
including some that would be difficult via the junction tree approach due to the graph
topology. The results appear to be quite encouraging, thus growing the body of heuristics
available for computing equilibria in compactly represented games.

3.2 Computation in Interdependent Security Games

We used the IDS model given by Kunreuther and Heal [2003], in which IDS problems are
modeled as n-player games. In an /DS game, each player must decide whether or not to
invest in some abstract security mechanism (such as a sprinkler system) or procedure that
can reduce their risk of experiencing some abstract bad event (such as their condominium
bumning down). There is a monetary cost of the investment to each player, and there is 2
cost of experiencing the bad event. Each, player has the choice to invest or not. Thus, there
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is a natural tension: players can either invest in security, which costs money but reduces
risk, or gambie by not investing.

In our work we established the first computational theory of this broad class of ID'S games,
including efficient algorithms for equilibrium computation in cases where certain natural
symmetries hold, as well as intractability results for certain equilibria in the general case.

As an empirical demonstration of IDS games, we constructed and conducted experiments
on an IDS game for airline security that is based on real industry data. We have access
to a data set consisting of 35,362 records of actual civilian commercial flight reservations,
both domestic and international, made on August 26, 2002. Since these records contain
complete flight itineraries, they include passenger transfers between the 122 represented
commercial air carriers. As described below, we used this data set to construct an IDS
game in which the players are the 122 carriers, the ““bad event” corresponds to a bomb
exploding in a bag being transported in a carrier’s airplane, and the transfer event is the
physical transfer of a bag from one carrier tc another.

The resulting simulations exhibited a number of striking results and predictions, including
the fact that the largest carriers tend not to invest in increased security, and the existence of
a small “tipping set” of carriers whose subsidized or coerced investment causes the entire
population to evolve towards investment.

3.3 Correlated Equilibria in Graphical Games

The first issue that arose in this investigation is the problem of representing correlated equi-
libria. Unlike Nash equilibria, even in very simple graphical games there may be correlated
equilibria of essentially arbitrary complexity {for instance, any mixture distribution of Nash
equilibria is a correlated equilibrium). Since one of cur primary goals is to maintain the
succinctness of graphical games, some way of addressing this distributional complexity is
required. For this we turned to another graphical formalism — namely, undirected graphi-
cal models for probabilistic inference, also known as Markov networks.

Our main results established a natural and powerful relationship between a graphical game
and a certain associated Markov network. It showed that the associated Markov network
is sufficient for representing all correlated equilibria of the graphical game, up to expected
payoff equivalence, Like the graphical game, the associated Markov network is a graph
over the players. In other words, the fact that a multiplayer game can be succinctly repre-
sented by a graph implies that its entire space of correlated equilibria, up to payoff equiv-
alence, can be represented graphically with comparable succinctness. Furthermore, while
the interactions between vertices in the graphical game are entirely srrategic and given by
local payoff matrices, the interactions in the associated Markov network are entirely prob-
abilistic and given by local potential functions. This basic result establishes a new sense
in which graphical games are a powerful formalism, and highlights the natural relationship
between computationa! game theory and modern probabilistic modeling,

Our second main result establishes the compurational benefits of this relationship. The
fact that correlated equilibria are characterized by a set of linear inequalities is not help-
ful for unrestricted multiplayer games, since in general there are an exponential number
of such inequalities. Here again the graphical representations reap benefits. We show
that a graphical game gives rise to a small set of linear inequalities (comparable in size
to the game representation itself) with a non-empty feasible region that includes all corre-
lated equilibria. In the case that the associated Markov network is chordal, which includes
graphical game trees as a special case, we prove that any point in the feasible region can
be efficiently mapped to a correlated equilibrium on the associated Markov network, thus
yielding a polynomial time algorithm for computing correlated equilibria in a large class
of graphical games. This algorithm also applies generally to non-chordal graphs, but in the
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worst case may require an exponential increase in the Markov network size.

3.4 Graphical Economics

In the same spirit of graphical games, in this work we introduced a new model called
graphical economics and show that it provides representational and algorithmic benefits for
Arrow-Debreu economics. Each vertex i in an undirected graph represents an individual
party in a large economic system. The presence of an edge between £ and j means that
free trade is allowed between the two parties, while the absence of this edge means there is
an embargo or other restriction on direct trade. The graph could thus represent a network
of individual business people, with the edges indicating who knows whom; or the global
economy, with the edges representing nation pairs with trade agreements; and many other
settings. Since not all parties may directly engage in trade, the graphical economics mode!
permits (and realizes) the emergence of local prices — that is, the price of the same good
may vary across the economy. Indeed, one of our motivations in introduciag the model is
to capture the fact that price differences for identical goods can arise due to the network
structure of economic interaction.

The graphical economics model suggests a local notion of clearance, directly derived from
that of the Arrow-Debreu model. Rather than asking that the entire (global) market clear
in each good, we can ask for the stronger “provincial” conditions that the loca! market for
each good must clear. For instance, the United States is less concerned that the worldwide
production of beef balances worldwide demand than it is that the production of American
beef balances worldwide demand for American beef. If this latter condition holds, the
American beef industry is doing a good job at matching the global demand for their product,
even if other countries suffer excess supply or demand. Similarly, an individual salesperson
in a large network for a product is principally concerned with managing just their own
inventory (supply and demand).

In addition to the introduction of the graphical economics model for capturing structured
interaction between individuals, organizations or nations, our contributions were in proving
that such an equilibrium always exists and in providing computational algorithms. Our
first result is a proof that under very general conditions (essentially analogous to Arrow
and Debreu’s original conditions), graphical equilibria always exist. This proof requires a
non-trivial modification to that of Arrow and Debreu , due to the need to explicitly prove
non-zera prices in all local neighborhoods. It combines an interesting concept known as a
"'quasi-equilibrium” due to Debreu [1962] with connectivity properties of the graph.

We also provided algorithm for computing approximate standard market equilibria in the
non-graphical setting that runs in time polynomial in the number of players (fixing the
number of goods) for a rather general class of non-linear utility functions. This result gen-
eralizes the algorithm of Deng et al. [2002] for linear utility functions. The approximation
algorithms we derive for this result are more generally useful for computation of graphical
equilibria. We note that while this result was not our principal interest, it fell naturally
out of our pursuit of the next result (which uses it as a subroutine), and seems sufficiently
fundamental to warrant highlighting. ‘

Our final contribution here was an algorithm, called ADProp (for Arrow-Debreu Propaga-
tion) for computing approximate graphical equilibria. This algorithm is & message-passing
algorithm working directly on the graph, in which neighboring consumers or economies ex-
change information about trade imbalances between them under potential equilibria prices.
In the case that the graph is a tree, the running time of the algorithm is exponential in the
graph degree and number of goods k, but only polynomial in the number of vertices n
(consumers or economies). It thus represents dramatic savings over treating the graphical
case with a non-graphical algerithm, which results in a running time exponential in 1 (as
well as in k).
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